GENERIC ISSUE 199 (GI-199)

IMPLICATIONS OF UPDATED PROBABILISTIC SEISMIC HAZARD ESTIMATES IN CENTRAL AND EASTERN UNITED STATES ON EXISTING PLANTS

SAFETY/RISK ASSESSMENT

August 2010

TABLE OF CONTENTS

EXE	ECUTIVE SUMMARY	3
LIST	T OF ACRONYMS AND INITIALISMS	7
GLC	OSSARY	8
1.	BACKGROUND	g
2.	PURPOSE	11
3.	3.1 Seismic Core-Damage Frequency3.2 Seismic Hazard Curves	
4.	RESULTS4.1 Seismic Core-Damage Frequency	
5.	5.1 Discussion	
6.	REFERENCES	33
APP	PENDICIES	
Α	A.1 Elementary Estimates A.2 Solution of the Elementary Equation A.3 Derived Estimates	ESTIMATES
В	B.1 USGS Hazard Model and Site AmB.2 Comparison of Hazard Results	B-1 plification B-1 B-8 Hazard Estimates B-10
С	PLANT-LEVEL FRAGILITY INFORMATION	DN C-1
D	SEISMIC CORE-DAMAGE FREQUENCIE	ES D-1

EXECUTIVE SUMMARY

RES staff developed and implemented a methodology to assess the risk associated with this issue. Preliminary results indicate that the issue should continue to the Regulatory Analysis Stage of the Generic Issues Program (GIP) for further investigation to identify candidate backfits and evaluate their potential cost-justified imposition. The information needed to perform the Regulatory Assessment is not currently available to the staff. The methodology, analyses, results and limitations of the safety risk assessment are summarized below.

Risk Methodology

Seismic core damage frequency (SCDF) was chosen as the appropriate risk metric because it is expected to be more sensitive than other metrics (either large-early release fraction or public dose) to changes in the seismic hazard. In addition, SCDF can be estimated using Individual Plant Examination of External Events (IPEEE) information. Conversely, the IPEEE program did not produce sufficient quantitative information to perform estimation of alternate risk metrics.

The staff performed a two-stage assessment to determine the implications of updated probabilistic seismic hazards in the Central and Eastern U.S. (CEUS) on existing nuclear power plants (NPPs). The change in seismic hazard with respect to previous estimates at individual NPPs was evaluated in the first stage, and the change in SCDF as a result of the change in the seismic hazard for each operating NPP was estimated in the second stage. The seismic hazard at each NPP site is dependent on the unique seismology and geology surrounding the site which necessitated separately determining the implications of updated probabilistic seismic hazard for each of the 96 operating NPPs in the CEUS.

Approximate SCDF estimates were developed using a method which includes integrating the mean seismic hazard curve and the mean plant-level fragility curve for each NPP. This method, developed by Kennedy (1997), is discussed in Section 10.8.9 of AMSE/ANS RA-Sa-2009 and has previously been used by the staff in the resolution of GI-194, "Implications of Updated Probabilistic Seismic Hazard Estimates," and during reviews of various risk-informed license amendments. This approach was discussed with EPRI under an NRC-EPRI seismic research memorandum of understanding. EPRI agreed that this is a reasonable approach for evaluating GI-199.

Performance of the Safety/Risk Assessment

The following describes the details of performing the Safety/Risk Assessment and associated limitations. There are two discrete inputs required for the methodology described above, plant-specific seismic hazard information and estimates of plant-specific seismic fragility.

Seismic Hazard Curves

SCDF estimates were produced using three sets of mean seismic hazard curves representing a range of different assumptions and the changing state of knowledge:

- EPRI, 1989
- Lawrence Livermore National Laboratory (LLNL), 1994
- NRC based on U.S. Geological Survey (USGS), 2008

Plant-Level Fragility Curves

Plant-level fragility curves were developed from information provided in the IPEEE submittals. About one-third of the plants in the CEUS performed a seismic probabilistic risk assessment (SPRA) as part of their IPEEE program. About two-thirds of the SPRA plants provided plant-level fragility information (either in tabular or graphic format) in their IPEEE submittals. The remaining one-third of the SPRA plants provided SCDF estimates based on a variety of seismic hazard curves (EPRI 1989, LLNL1994, or site-specific curves developed specifically for the IPEEE program). For these remaining plants, plant-level fragility values were back-calculated by matching the reported SCDFs and using engineering judgment. In cases where reasonable engineering judgments could not be readily made, sensitivity studies were performed.

The other two thirds of the plants conducted a seismic margins analysis (SMA) as part of their IPEEE program. The figure of merit for an SMA is the plant-level high confidence of low probability of failure (HCLPF) value.

Analyses Performed

For each of the three sets of seismic hazard curves (EPRI, LLNL, NRC/USGS), four SCDF estimates were developed. These four SCDF estimates were developed for a discrete series of representative spectral response frequencies (peak ground acceleration (PGA), 10, 5, and 1-Hz) and utilized spectral shapes based on the plant-specific IPEEE evaluations. For each NPP and hazard curve combination, the discrete spectral SCDF estimates were combined using four different weighting schemes to produce final plant-level SCDF estimates.

Evaluation of Changes in Seismic Hazard Estimates

The evaluation of the potential significance of changes in seismic hazards was performed in a stepwise fashion by posing a series of questions that indicated the degree of deviation of seismic hazard estimates developed using the most recent seismic hazard information and staff guidance from previously developed assessments. The previous assessments included the Safe Shutdown Earthquake (SSE), the review level earthquake (RLE) used in the IPEEE assessment, and the 1989 EPRI and 1994 LLNL seismic hazard studies. The comparison of results indicated a substantial increase in the estimated seismic hazard values relative to all previous assessments for a number of plants.

Risk Results

For those plants with increases in seismic hazard estimates, the study next evaluated if there was any significant change in the risk metric (SCDF). To perform this assessment, the point estimates of the mean SCDF developed using the NRC/USGS hazard curves were compared with the baseline SCDFs developed using the original LLNL or EPRI seismic hazard curves. The SCDF changes for a number of plants lie in the range of 10-4/year to 10-5/year, which meet the numerical risk criteria for an issue to proceed to the GIP Regulatory Assessment Stage.

Overall seismic risk estimates remain small in an absolute sense. All operating plants in the CEUS have seismic core-damage frequency (SCDF) less than or equal to 10^{-4} /year, confirming that there is no immediate concern regarding adequate protection.

Limitations of the Risk Methodology and Data Used

The approach used to estimate SCDF in the Safety/Risk Assessment is highly sensitive to the inputs used. While work to date supports a decision to continue to the GIP Regulatory Assessment Stage; the methodology, input assumptions, and data are not sufficiently developed to support other regulatory decisions or actions.

The approach used to estimate SCDF in the Safety/Risk Assessment does not provide insight into which structures, systems, and components (SSCs) are important to seismic risk. Such knowledge provides the basis for postulating plant backfits and conducting a value-impact analysis of potential backfits during a regulatory analysis.

Little useful information exists regarding plant seismic capacity (the ability of a plant's SSCs to successfully withstand an earthquake) beyond the required design-basis level for a number of plants that performed reduced-scope SMAs.

In general, only limited, qualitative information about the seismic capability of containments is provided in IPEEE submittals.

The integration of the mean seismic hazard curve and the mean plant-level fragility curve is not equal to the mean SCDF; accordingly, the SCDF estimates produced by the approach are point estimates.

The approach does not provide a quantitative estimate of the parametric uncertainty in the SCDF. Although the USGS approach explicitly includes uncertainties, the USGS has not published fractile curves for its seismic hazard estimates.

New consensus seismic hazard estimates for the CEUS will become available in late 2010 or early 2011 (these are a product of a joint NRC, Department of Energy, USGS, and EPRI project), and underscore the need to develop a regulatory mechanism to routinely and promptly evaluate new seismic hazard information as it becomes available.

Problems that currently exist with producing realistic SCDF estimates will continue even after the new consensus seismic hazard estimates are developed. The main problem is that many IPEEEs did not produce SCDF estimates and so lack some of the information needed to produce updated SCDF estimates. As such, the available seismic margins can only be grossly estimated and may be eroding as new seismic hazard estimates are developed.

Information Needed to Perform the Regulatory Analysis Stage of GI-199

The following four categories of information are needed to perform the Regulatory Analysis Stage of the GIP for GI-199:

- Site-specific, updated EPRI hazard curves used to evaluate plant seismic risk in the recent study conducted by EPRI for industry. The hazard curves should cover a range of appropriate structural frequencies (PGA to 0.5 Hz), and be in a tabular, digital form.
- Frequency dependent, site-specific amplification functions used to translate seismic
 motions from hard rock conditions to appropriate surface conditions. These functions
 should be consistent with the recent seismic evaluation performed by EPRI using
 updated seismic hazard results (see previous item), and be in tabular, digital form.
- Plant-level fragility information used in the recent study conducted by EPRI. Specific information needed includes the median seismic capacity (C_{50}), the composite logarithmic standard deviation ($\beta_{\rm C}$), and spectral ratios (relative to PGA) for 1, 5, and 10 Hz (at a minimum), representative of the currently operated plant.
- Plant-specific significant contributors to seismic risk. Identify the SSCs that are significant contributors to seismic risk and the approach used to identify them.

Conclusions

Results of the Safety/Risk Assessment indicate that there is no immediate concern regarding adequate protection, but that the issue should continue to the Regulatory Analysis Stage of the GIP (for further investigation regarding possible cost-justified backfits). The information and methods needed to perform the Regulatory Assessment are not yet available to the staff, but have been identified.

LIST OF ACRONYMS AND INITIALISMS

AEF annual exceedance frequency
CAV cumulative absolute velocity
CDF core-damage frequency

CEUS Central and Eastern United States

COL Combined License

EPRI Electric Power Research Institute

EPRI-SOG Electric Power Research Institute-Seismicity Owners Group

ESP Early Site Permit

FSAR Final Safety Analysis Report GIP Generic Issues Program

GMRS ground motion response spectrum

HCLPF high confidence of low probability of failure

HR hard rock

IPEEE Individual Plant Examination of External Events

LERF large early-release frequency

LLNL Lawrence Livermore National Laboratory

MD Management Directive

MOU Memorandum of Understanding

NPP nuclear power plant

NRR Office of Nuclear Reactor Regulation

PGA peak ground acceleration

PSHA probabilistic seismic hazard analysis

RLE review-level earthquake SA spectral acceleration

SCDF seismic core-damage frequency

SCDOT South Carolina Department of Transportation

SMA seismic margins analysis

SPRA seismic probabilistic risk analysis

SR soft rock

SSC structures, systems, and components

SSE safe shutdown earthquake

SSHAC Senior Seismic Hazard Analysis Committee

TFI Technical Facilitator Integrator
TIP Trial Implementation Program
TVA Tennessee Valley Authority
UHS uniform hazard spectrum

USGS United States Geological Survey

Vs shear wave velocity
WUS Western United States

GLOSSARY

- Annual exceedance frequency (AEF) Expected number of occurrences per year where
 a site's ground motion exceeds a specified acceleration.
- Design basis earthquake or safe shutdown earthquake (SSE) A design basis
 earthquake is a commonly employed term for the SSE: that earthquake for which certain
 structures, systems and components are designed to remain functional. In the past, the
 SSE has been commonly characterized by a standardized spectral shape anchored to a
 "peak ground acceleration" value.
- Ground acceleration Acceleration at the ground surface produced by seismic waves, typically expressed in unit of g, the acceleration of gravity at the Earth's surface.
- High confidence of low probability of failure (HCLPF) capacity A measure of seismic margin. In seismic risk assessment, this is defined as the earthquake motion level at which there is a high confidence (95%) of a low probability (at most 5%) of failure.
- Seismic hazard Any physical phenomenon, such as ground motion or ground failure, that is associated with an earthquake and may produce adverse effects on human activities (such as posing a risk to a nuclear facility).
- Seismic margin The difference between a plant's HCLPF capacity and its seismic design basis (safe shutdown earthquake, SSE).
- Seismic risk The risk (frequency of occurrence multiplied by its consequence) of severe accidents at a nuclear power plant that are initiated by earthquakes. A severe accident is an accident that causes core damage and, possibly, a subsequent release of radioactive materials to the environment. Several risk metrics may be used to express seismic risk, such as seismic core-damage frequency and seismic large early release frequency.

GENERIC ISSUE 199 (GI-199) IMPLICATIONS OF UPDATED PROBABILISTIC SEISMIC HAZARD ESTIMATES IN CENTRAL AND EASTERN UNITED STATES ON EXISTING PLANTS

SAFETY/RISK ASSESSMENT

1. BACKGROUND

In support of early site permits for new reactors, the U.S. Nuclear Regulatory Commission (NRC) staff reviewed updates to seismic source and ground motion models provided by applicants. The seismic update information included new models to estimate earthquake ground motion and updated models for earthquake sources in seismic regions around Charleston, South Carolina, New Madrid, Missouri, and southern Illinois and Indiana. The new data and models resulted in increased estimates of the seismic hazards at many plants in the Central and Eastern United States (CEUS), but these estimates remain small in an absolute sense. The staff reviewed and evaluated this new information along with recent U.S. Geological Survey (USGS) seismic hazard estimates for the CEUS. From this review, the staff identified that the estimated seismic hazard levels at some current CEUS operating sites might be higher than seismic hazard values used in design and previous evaluations. Figure 1 shows a comparison of response spectral values based on Early Site Permit (ESP) seismic hazard results with those previously developed as part of the 1989 Electric Power Research Institute-Seismicity Owners Group (EPRI-SOG) study for an annual exceedance frequency (AEF) of 10⁻⁵. The figure shows that for four of the ESP submittals (North Anna, Grand Gulf, Vogtle, and Clinton), the seismic hazard is higher over most of the frequency range compared to the earlier EPRI-SOG study results.

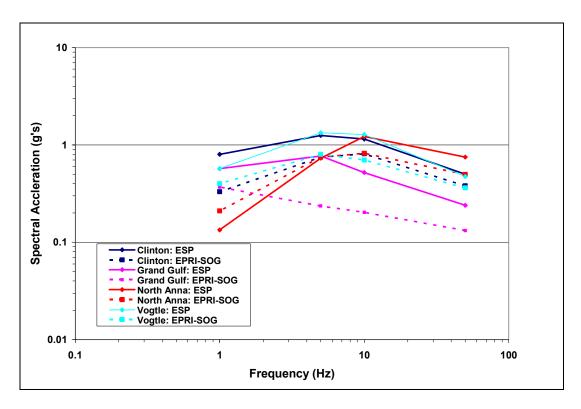


Figure 1. Comparison of Seismic Hazard Results for Four Early Site Permit Submittals (Solid Lines) to 1989 EPRI-SOG Results (Dashed Lines). Curves are response spectral values (5-percent damping) at an annual exceedance frequency of 10⁻⁵.

The staff of NRC's Office of Nuclear Reactor Regulation (NRR) compared the new seismic hazard data with the earlier evaluations conducted as part of the Individual Plant Examination of External Events (IPEEE) Program. From this comparison, the staff determined that seismic designs of operating plants in the CEUS still provide adequate safety margins; however, the staff continues to evaluate new seismic hazard data and models and their potential impact on plant risk estimates. At the same time, the staff also recognized that the new seismic data and models could reduce available safety margins because of increased estimates of the probability associated with seismic hazards at some of the currently operating sites in the CEUS. The licensing basis for these plants does not include a probabilistic assessment of seismic hazards or a probabilistic assessment of their potential impact on plant structures, systems, and components (SSCs). Rather, the licensing basis for these plants is based on deterministic analysis for design basis loads from the maximum earthquake level that is determined from historical data (10 CFR 100 Appendix A). On May 26, 2005, the NRR staff issued a memorandum (ADAMS Accession No. ML051450456) recommending that the new data and models on CEUS seismic hazards be examined using a probabilistic approach under the Generic Issues Program (GIP) to help assess the potential reduction in available safety margins.

The staff completed a screening analysis using guidance contained in Management Directive (MD) 6.4 and SECY-07-0022 in December 2007 and reconvened the screening panel in January 2008. On February 1, 2008, the RES Director approved the screening panel's

recommendation (ADAMS Accession No. ML073400477) to begin the Safety/Risk Assessment Stage of the Generic Issue Process. On February 6, 2008, the staff met with the public and stakeholders to discuss the results of the Screening Stage of Generic Issue 199.

On March 14, 2007, NRC and the Electric Power Research Institute (EPRI) signed a Memorandum of Understanding (MOU) on Cooperative Nuclear Safety Research. On July 11, 2008, NRC signed an addendum to this MOU concerning seismic risk, and on July 22, 2008, EPRI also signed the addendum. Program Element 3A of this addendum addresses updated seismic hazard assessments in support of GI-199. NRC and EPRI met on December 3, 2008, in Ft. Lauderdale, Florida, and March 17-18, 2009, in Palo Alto, California, to exchange information about seismic risk methodology, seismic hazard curves, and current seismic coredamage frequency estimates for operating nuclear power plants (NPPs). Under the terms of the MOU, data acquired during the course of collaborative work are considered privileged information and thus are routinely withheld from release until the final reports on this work are made publically available.

2. PURPOSE

The purpose of the Safety/Risk Assessment Stage is twofold:

- Determine, on a generic basis, if the risk associated with Generic Issue (GI) 199, "Implications of Updated Probabilistic Seismic Hazard Estimates in Central and Eastern United States (CEUS) on Existing Plants," warrants further investigation for potential imposition as a cost-justified back-fit.
- Provide a recommendation regarding the next step (i.e., should the issue continue to the Regulatory Assessment Stage for identification and evaluation of potential generic, costjustified backfits, be dropped due to low risk, or have other actions taken outside the Generic Issues Program).

3. APPROACH

To determine the implications of updated probabilistic seismic hazard estimates in the CEUS on existing NPPs, the staff performed a two-stage assessment. One stage involved evaluating the change in seismic hazard with respect to previous estimates at individual NPPs (discussed in section 4.2). The second stage estimated the change in seismic core-damage frequency (SCDF) as a result of the change in the seismic hazard for each operating NPP in the CEUS (discussed in section 4.1). This approach was based on the following considerations:

- The estimation of seismic hazards is complex and significant uncertainties are associated with many of the input parameters in the hazard models. This is especially true for regions of lower seismic activity such as the CEUS. Evaluation of any new seismic hazard estimates with respect to previous estimates is prudent to ensure the changes are significant and not merely representative of the fidelity in the seismic hazard estimation process.
- MD 6.4 states that the risk-informed technical assessment of a generic issue may be conducted using core-damage frequency (CDF), large early-release frequency (LERF),

public dose (person-rem), or a combination of these risk metrics. The selection of the appropriate risk metric(s) to assess a generic issue depends on the specific nature of the generic issue being assessed. The Safety/Risk Assessment of GI-199 involves the implications of updated probabilistic seismic hazard estimates that describe the distribution (frequency and size) of seismically induced site vibratory ground motions at NPP sites. Although each of the three risk metrics (CDF, LERF, and public dose) depends on the seismic hazard, SCDF is expected to be the most sensitive to changes in the seismic hazard.

- Given a limited number of assumptions, SCDF can be readily estimated using the seismic hazard and information from the IPEEE requested by Generic Letter 88-20, Supplement 4. In contrast, the containment performance analyses conducted under the IPEEE program did not produce sufficient quantitative information to allow the estimation of either LERF or public dose.
- Typically, the Safety/Risk Assessment of a generic issue is based upon a surrogate probabilistic risk assessment (PRA) or a small set of surrogate PRAs that model classes of plants (e.g., four-loop Westinghouse pressurized-water reactors [PWRs], Babcock and Wilcox PWRs, boiling-water reactors [BWRs], etc.). However, the seismic hazard at each NPP site is unique because it depends on the seismology and the geology surrounding the site. Figure 2 illustrates this point and illustrates the large variation in the seismic hazard across the United States. The Safety/Risk Assessment needed to determine the extent of GI-199 (e.g., determine how many plants are potentially affected). Therefore, it was necessary to determine the implications of updated probabilistic seismic hazard estimates in the CEUS at each operating NPP.

With respect to the Safety/Risk Assessment Stage, the term "Central and Eastern United States" refers to operating NPPs that are located east of the Rocky Mountains. Table 1 lists the 96 operating NPPs that are located within the CEUS.

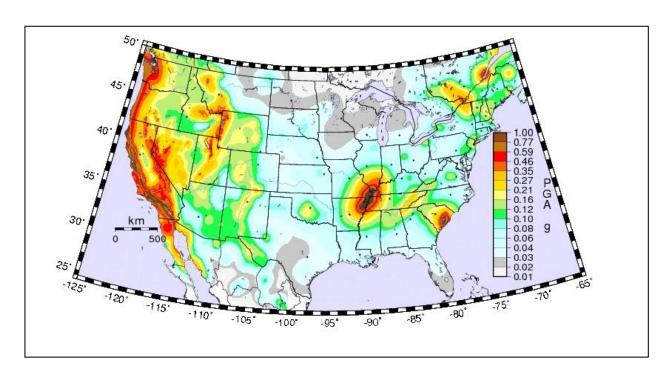


Figure 2. Peak Horizontal Acceleration (%g) for 2-Percent Probability of Exceedance in 50 Years for Conterminous United States. Source: USGS.

Table 1. List Of Operating Nuclear Power Plants Located Within the Central And Eastern United States.						
Docket Docket						
Plant	Number	Plant	Number			
Arkansas Nuclear 1	05000313	Millstone 2	05000336			
Arkansas Nuclear 2	05000368	Millstone 3	05000423			
Beaver Valley 1	05000334	Monticello	05000263			
Beaver Valley 2	05000412	Nine Mile Point 1	05000220			
Braidwood 1	05000456	Nine Mile Point 2	05000410			
Braidwood 2	05000457	North Anna 1	05000338			
Browns Ferry 1	05000259	North Anna 2	05000339			
Browns Ferry 2	05000260	Oconee 1	05000269			
Browns Ferry 3	05000296	Oconee 2	05000270			
Brunswick 1	05000325	Oconee 3	05000287			
Brunswick 2	05000324	Oyster Creek	05000219			
Byron 1	05000454	Palisades	05000255			
Byron 2	05000455	Peach Bottom 2	05000277			
Callaway	05000483	Peach Bottom 3	05000278			
Calvert Cliffs 1	05000317	Perry 1	05000440			
Calvert Cliffs 2	05000318	Pilgrim 1	05000293			
Catawba 1	05000413	Point Beach 1	05000266			
Catawba 2	05000414	Point Beach 2	05000301			

Table 1. List Of Operating Nuclear Power Plants Located Within the Central And Eastern United States.						
	Docket		Docket			
Plant	Number	Plant	Number			
Clinton	05000461	Prairie Island 1	05000282			
Comanche Peak 1	05000445	Prairie Island 2	05000306			
Comanche Peak 2	05000446	Quad Cities 1	05000254			
Cooper	05000298	Quad Cities 2	05000265			
Crystal River 3	05000302	River Bend 1	05000458			
D.C. Cook 1	05000315	Robinson 2	05000261			
D.C. Cook 2	05000316	Saint Lucie 1	05000335			
Davis-Besse	05000346	Saint Lucie 2	05000389			
Dresden 2	05000237	Salem 1	05000272			
Dresden 3	05000249	Salem 2	05000311			
Duane Arnold	05000331	Seabrook 1	05000443			
Farley 1	05000348	Sequoyah 1	05000327			
Farley 2	05000364	Sequoyah 2	05000328			
Fermi 2	05000341	South Texas 1	05000498			
FitzPatrick	05000333	South Texas 2	05000499			
Fort Calhoun	05000285	Summer	05000395			
Ginna	05000244	Surry 1	05000280			
Grand Gulf 1	05000416	Surry 2	05000281			
Harris 1	05000400	Susquehanna 1	05000387			
Hatch 1	05000321	Susquehanna 2	05000388			
Hatch 2	05000366	Three Mile Island 1	05000289			
Hope Creek 1	05000354	Turkey Point 3	05000250			
Indian Point 2	05000247	Turkey Point 4	05000251			
Indian Point 3	05000286	Vermont Yankee	05000271			
Kewaunee	05000305	Vogtle 1	05000424			
La Salle 1	05000373	Vogtle 2	05000425			
La Salle 2	05000374	Waterford 3	05000382			
Limerick 1	05000352	Watts Bar 1	05000390			
Limerick 2	05000353	Wolf Creek 1	05000482			
McGuire 1	05000369					
McGuire 2	05000370					

3.1 <u>Seismic Core-Damage Frequency Estimates</u>

Approximate SCDF estimates were developed by integrating the mean seismic hazard curve and the mean plant-level fragility curve for each NPP. This method, developed by Kennedy (1997), is discussed in Section 10.8.9 of AMSE/ANS RA-Sa-2009 and has previously been used by the staff in the resolution of GI-194, "Implications of Updated Probabilistic Seismic Hazard Estimates" and is the basis for the seismic performance-based approach for determining the site SSE and described in Regulatory Guide 1.208. Appendix A provides a detailed explanation of the method and its implementation.

The approach used in the Safety/Risk Assessment to approximate SCDF uses the available seismic risk information from IPEEs and is computationally efficient. Computational efficiency is an important consideration because SCDFs need to be generated for each operating NPP located in the CEUS using various seismic hazard estimates to fully assess the implications of GI-199. However, the following are some recognized limitations to the approach:

- The integration of the mean seismic hazard curve and the mean plant-level fragility curve is not equal to the mean SCDF; accordingly, the SCDF estimates produced by the approach are point estimates. However, the numerical criteria in MD 6.4 are posed in terms of mean values.
- The approach does not provide a quantitative estimate of the parametric uncertainty in the SCDF. It should be noted that the mean seismic hazard curves produced by the USGS do not explicitly include uncertainty information.
- The approach does not provide any insight into which SSCs are important to seismic risk. This knowledge is needed if a regulatory analysis is required because it provides the basis for postulating plant backfits and conducting a value-impact analysis.

SCDF estimates were produced using three sets of mean seismic hazard curves that have been generated at various times and by various organizations as follows:

- 1. Electric Power Research Institute, 1989,
- 2. Lawrence Livermore National Laboratory, 1994.
- 3. NRC based on U.S. Geological Survey, 2008.

The following eight SCDF estimates were developed from each set of seismic hazard curves:

- 1. SCDF_{pga} integration of the pga-based seismic hazard and plant-level fragility curves.
- 2. SCDF₁₀ integration of the 10-Hz seismic hazard and plant-level fragility curves.
- 3. SCDF₅ integration of the 5-Hz seismic hazard and plant-level fragility curves.
- 4. SCDF₁ integration of the 1-Hz seismic hazard and plant-level fragility curves.
- 5. $SCDF_{max}$ maximum of the $SCDF_{pqa}$, $SCDF_{10}$, $SCDF_{5}$, and $SCDF_{1}$ estimates.
- 6. SCDF_{avg} simple average of the SCDF_{pga}, SCDF₁₀, SCDF₅, and SCDF₁ estimates.
- 7. SCDF_{IPEEE} weighted average of the SCDF_{pga}, SCDF₁₀, SCDF₅, and SCDF₁ estimates, where the weights were obtained from Appendix A of NUREG-1407 (SCDF_{pga} was weighted by one-seventh and the other SCDF estimates were weighted by two-sevenths).
- 8. SCDF_{wl} SCDF estimate based on the weakest link model described in Appendix A

3.2 Seismic Hazard Curves

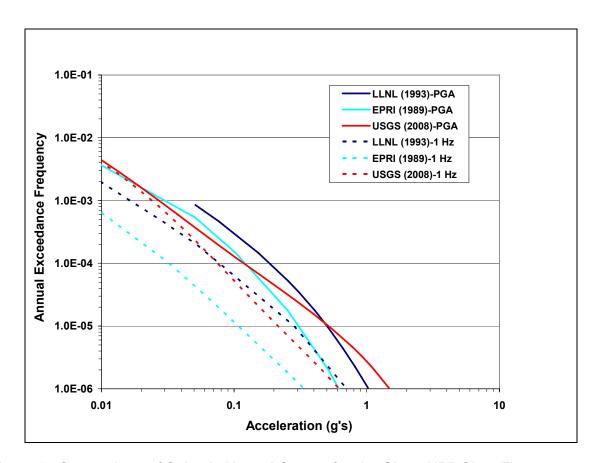
As discussed earlier, the approach taken in the Safety/Risk Assessment was to assess changes in seismic hazard estimates with respect to previous estimates and then evaluate any risk significance of those changes using the Generic Issues decision framework. To proceed, it is necessary to develop both a current estimate of seismic hazard and an estimate of change in hazard for each NPP site of interest. This requires the specification of seismic hazards using current tools (i.e., the U.S. Geological Survey [USGS] hazard model results discussed below) and previous seismic hazard estimates that were considered to be acceptable. For this assessment, the seismic hazard estimates developed by EPRI-SOG (1989) and Lawrence Livermore National Laboratory (LLNL) (NUREG-1488, 1993) were used as the "baseline" cases from which changes could be evaluated. Both the EPRI and LLNL hazard results were identified as acceptable for use in the IPEEE evaluations, and the resulting SCDF values (either implied or explicitly computed) were deemed acceptable at the time. The results of the current SCDF and Delta-SCDF computations are discussed in more detail in subsequent sections.

The estimates of seismic hazard used in this Safety/Risk Assessment were obtained using the seismic hazard model developed by the USGS available during the fall of 2008. Other recent comprehensive seismic hazard studies have been conducted at various locations in the CEUS. Examples of these studies include the Trial Implementation Program (TIP) conducted by LLNL for NRC (NUREG-6607, 2002), a study for the South Carolina Department of Transportation (SCDOT), and a study performed for the Tennessee Valley Authority (TVA) Dam Safety Analysis Program. Unfortunately, these studies focused on small regions (or individual sites) and would not be useful for a systematic evaluation of all NPP sites in the CEUS.

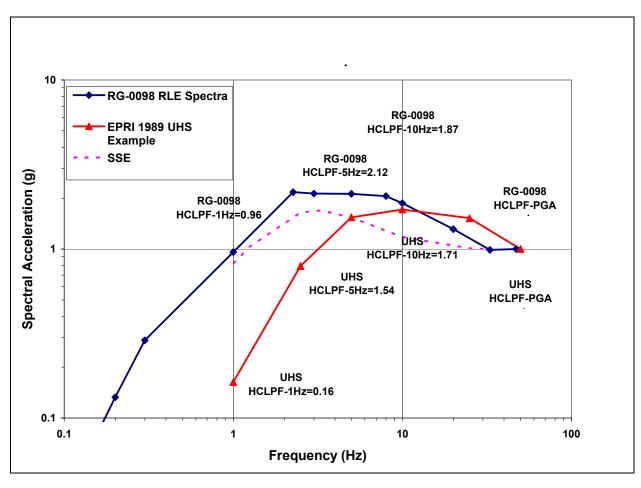
As stated earlier in the Background section of this report, industry has updated the EPRI-SOG (1989) seismic source models as well as the ground motion prediction models for the CEUS in support of the ESP and Combined License (COL) applications submitted to NRC. These updated probabilistic seismic hazard analysis (PSHA) estimates would provide the staff with an ideal comparison to the earlier PSHA estimates; however, under program element 3A of the MOU, industry has only provided a very limited amount of information for NRC staff to use. As a result, the staff has primarily used the 2008 version of the USGS hazard model although it also evaluated the seismic hazard results provided by industry and submitted as part of the ESP and COL applications.

This USGS seismic hazard model has been developed and refined over a number of years (Frankel et al., 1996; 2002; Peterson et al., 2008). The USGS National Seismic Hazard Mapping Program follows a structured process to develop the seismic hazard models and computational programs used in the development of the national seismic hazard maps. This process involves a series of regional workshops used to elicit information and data from the research community and includes internal and external peer review of the resulting model. The results of this process are seismic hazard estimates for a dense grid of locations in the United States that are used as the basis for seismic design parameters in the current building codes (see Figure 2 for an example). Although not specifically designed to conform to the guidelines for performing high-level seismic hazard studies outlined in the Senior Seismic Hazard Analysis Committee (SSHAC) report (NUREG/CR-6372, 1997), the USGS process possesses many of the attributes of a Level 3 study as discussed in the SSHAC report. Likewise, although the EPRI-SOG (1989) study predated the SSHAC guidelines, the study had many of the attributes of a Level 4 study, and the updates being performed for the ESP and COL submittals are

consistent with the SSHAC (Level 2) guidelines. The USGS seismic hazard models have not been used to site critical facilities such as NPPs although the NRC staff and industry have used the USGS hazard results for comparison to the EPRI-SOG models submitted in support of the ESP and COL applications. Recent regional or site-specific studies such as the TIP, SCDOT, and TVA studies mentioned above have been evaluated during the development of the USGS model as well as the updated EPRI-SOG model used in the ESP-COL applications.


For this assessment, the 2008 version of the USGS hazard model was used to compute seismic hazard estimates for individual plant locations (defined by latitude and longitude). For multiunit sites, the computation location was defined as the approximate center of the nuclear complex. The calculations assumed rock site conditions with near-surface shear wave velocity of 2,500 meters/second. Not all NPP sites can be reasonably represented as having hard rock site conditions. The definition of site type for individual units was generally consistent with the generic site classifications contained in the EPRI-SOG study (1989). For plants not evaluated in the EPRI-SOG (1989) study, the Final Safety Analysis Report (FSAR) was consulted to define a representative generic site classification. For any soil sites that had site-specific site amplifications available, those functions were used in lieu of the generic functions. Table B-2 in Appendix B summarizes the assumed site-type classifications for each NPP site.

As part of its preparation for submitting COL and ESP applications, industry has refined its site-specific amplification functions for many if not all of the CEUS NPP sites. However, the NRC staff has had access to only a few sites in addition to the ESP and COL sites that are collocated with a currently operating NPP. These site amplification functions can be quite different even for sites located very close together. Different assumptions regarding site amplification functions can have a very significant impact on hazard results (and subsequently on risk metrics). Figure B-5 in Appendix B illustrates this effect.


Seismic hazard estimates for each site were computed for four spectral frequencies (peak ground acceleration or PGA, 10, 5, and 1 Hz). Figure 3 illustrates representative results for rock hazard at the Ginna NPP site. Note that the hazard curves (H(a)) are monotonically decreasing and about linear in log-log-space. This figure illustrates the general (but not universal) characteristics of the comparison for many plants. Specifically, the latest USGS results are greater than the 1989 EPRI-SOG results but similar to, or in some cases less than, the 1993 LLNL results. Appendix B contains additional details on the computation of seismic hazard and additional comparisons.

As described in the next section, the results of the IPEEE program were utilized to develop fragility estimates to use with the seismic hazard results to produce plant-specific seismic CDF estimates. However, the IPEEE results represent the plant-level fragility in terms of PGA only; specifically, either directly or indirectly as a high confidence of low probability of failure PGA value ($HCLPF_{PGA}$). It is recognized that, at the plant level, the design response spectrum varies with frequency (Hz) (see Figure 4) and different elements within the plant may respond to different frequencies. As a result, it is desirable to estimate a frequency-dependent SCDF value over a range of frequencies of interest. This was accomplished by noting that as part of the IPEEE submittals, each NPP defined a review-level earthquake (RLE) spectral shape that was used in the review and analysis process. Table B-2 in Appendix B summarizes the IPEEE evaluation method, high confidence of low probability of failure (HCLPF) value, and RLE spectral shape for each NPP in the CEUS.

By anchoring the RLE spectrum to the $HCLPF_{PGA}$ –value and knowing the ratio between the spectral values of interest (10, 5, and 1 Hz) and PGA in the RLE spectrum, it is possible to compute $HCLPF_{10Hz}$, $HCLPF_{5Hz}$, and $HCLPF_{1Hz}$ values in addition to $HCLPF_{PGA}$. Figure 4 illustrates this procedure. Those plants that performed a seismic margins analysis (SMA) as part of the IPEEE evaluation generally utilized a smooth, broad-band RLE spectrum (NUREG-0098 or similar). However, for the plants that performed a seismic probabilistic risk assessment (SPRA), the RLE spectrum was generally based on a site-specific uniform hazard spectrum (UHS). In some cases this UHS fell below the plant-specific safe shutdown earthquake (SSE) (or design basis) spectrum at lower frequencies, implying the $HCLPF_{1Hz}$, for example, would be well below the design basis value. Figure 4 shows this effect. The NRC staff conducting this evaluation believes it is unlikely that the HCLPF would be Iess than the design value if the recommendations/requirements contained in the Standard Review Plan were followed. As a result, for this assessment, we have decided to test the spectral HCLPF values against the design values and have chosen the maximum of the two values (i.e., for each spectral frequency of interest: $HCLPF_{SA} = max[RLE_{SA}, SSE_{SA}]$).

Figure 3. Comparison of Seismic Hazard Curves for the Ginna NPP Site. These curves were developed using the 2008 USGS seismic hazard model (red curves), the 1993 LLNL results (blue curves), and 1989 EPRI results (turquoise curves). Results for PGA are indicated by solid curves and for 1-Hz spectral acceleration by dashed curves.

Figure 4. Illustration of Normalized Spectral Shapes Used in IPEEE Analyses. The blue curve is the spectral shape from RG-0098 that was used as the RLE in many IPEEE SMA assessments, the red curve is an example uniform hazard (UHS) spectrum similar to many used in the IPEEE SPRAs. The dashed curve is an example SSE spectrum (normalized). The HCLPF values for spectral frequencies other than PGA were assigned based on the ratio between the frequency of interest and PGA (HCLPF_{10Hz} = $1.87*HCLPF_{PGA}$ for the RG-0098 example shown here). For plants that used a UHS in the IPEEE assessment, the individual spectral HCLPF values (e.g., HCLPF_{5Hz}) were tested to see if they fell below the SSE spectrum at that frequency (SSE_{5Hz}); if so, the maximum of the two values was assigned.

3.3 Plant-Level Fragility Curves

The plant-level fragility curves were developed from information provided in the IPEEE submittals. It is recognized that plants may have made modifications that changed the plant-level fragility subsequent to completion of their IPEEs; however, no regulatory requirement exists for plants to reflect the impact of such modifications in their IPEEs (or, in fact, for plants licensed under 10 CFR Part 50 to maintain a PRA).

About one-third of the plants performed a SPRA as part of their IPEEE program. Licensees were not required to provide the actual SPRAs to NRC. Of the plants that performed SPRAs, about two-thirds provided plant-level fragility information (either in tabular or graphical format) in

their IPEEE submittals. The remaining one-third of the SPRA plants provided SCDF estimates based on a variety of seismic hazard curves (EPRI 1989, LLNL 1994, or site-specific curves developed specifically for the IPEEE program). For these remaining plants, plant-level fragility values were back-calculated by matching the reported SCDFs and using engineering judgment. In cases where reasonable engineering judgments could not readily be made (e.g., the shape of the review-level ground motion ground spectrum), sensitivity studies were performed.

About two-thirds of the plants conducted a SMA as part of their IPEEE program. The figure of merit for an SMA is the plant-level HCLPF. Two SMA methodologies were recognized in Generic Letter 88-20, Supplement 4, for conducting an SMA—the EPRI methodology and the NRC methodology. Both methods utilize an RLE, which is specified in NUREG-1407 for each plant (listed in Table B-2 of Appendix B). In the EPRI methodology, two success paths are identified, where a success path consists of a selected group of safety functions capable of bringing the plant to a safe state after an earthquake larger than design basis and maintaining it there for 72 hours. The individual SSCs needed to accomplish each of the two success paths are then screened with respect to the RLE (if an SSC has a HCLPF that is less than the RLE, then the SMA uses the actual HCLPF; otherwise, the RLE is used). The individual SSC HCLPF values are then propagated through the success paths using simplified bounding logic to determine the plant-level HCLPF. The NRC approach uses fault tree logic (as opposed to success paths).

It is important to recognize that the actual plant-level HCLPF may not be determined by an SMA; that is, the RLE may be a lower bound for the actual plant-level HCLPF. This was acceptable for the IPEEE program because it was focused on identifying vulnerabilities and risk insights. However, it poses a challenge for the Safety/Risk Assessment because SCDF estimates based on the RLE may be conservative. This conservatism is opposed, however, by limitations in the basic SMA approach, which only treats random equipment failures (nonseismic failures) and operator errors in a simplified fashion.

Appendix C provides a detailed discussion of the development of the plant-level fragility curves and tabulates the fragility parameters used in the Safety/Risk Assessment.

4. RESULTS

4.1 SCDF Estimates

Using the 2008 USGS seismic hazard curves, all operating plants in the CEUS have SCDF less than or equal to 10⁻⁴ per year. This result confirms NRR's conclusion that currently operating plants are adequately protected against the change in seismic hazard estimates because the guidelines in NRR Office Instruction LIC-504, "Integrated Risk-Informed Decision Making Process for Emergent Issues," are not exceeded.

Generic Issues Program guidance contains numerical screening criteria in the form of an x-y plot, where the x-axis is the total baseline core-damage frequency and the y-axis is the change in core-damage frequency associated with the generic issue. The staff does not have estimates of the total core-damage frequency for each plant located within the CEUS (no information is available on external events such as fires, external floods, etc.). Moreover, establishing the baseline SCDF is problematic because this depends on which set of seismic hazard curves are used. Possible candidates include the 1989 EPRI-SOG results and the 1994 LLNL results

because both were accepted by the staff for use in the IPEEE process. It must be noted that the licensing basis for plants located in the CEUS is based on deterministic analysis for design basis loads from the maximum earthquake level that is determined from historical data. Consequently, the licensing basis for these plants does not include a probabilistic assessment of seismic hazards or their potential impacts on plant risk. Figure 5 provides a comparison against the MD 6.4 criteria using both the EPRI data and the LLNL data to establish the baseline seismic risk. Continued evaluation is warranted for plants that lie in the shaded region of Figure 5.

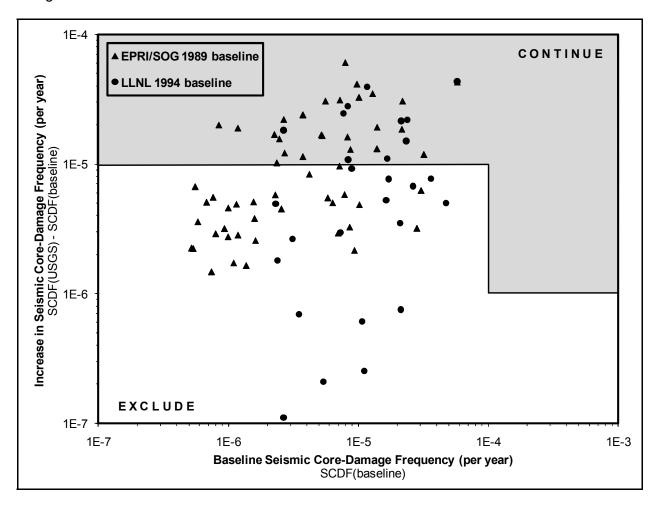


Figure 5. Comparison of Results from the Safety/Risk Assessment for GI-199 to the Screening Criteria in MD 6.4.

If the 1989 EPRI-SOG data are used to establish the baseline SCDF, then 36 plants lie in the "continue" region; if the 1994 LLNL data is used, only 11 plants lie in the "continue" region." These results do not change if the contribution from internal events, as computed by the staff's Standardized Plant Analysis of Risk (SPAR) models, is added to the baseline SCDF.

Another approach to review the results of the Safety/Risk Assessment is to develop fleetwide population variability distributions of the SCDF estimates. Figure 6 provides "box-and-whisker" plots of these distributions.

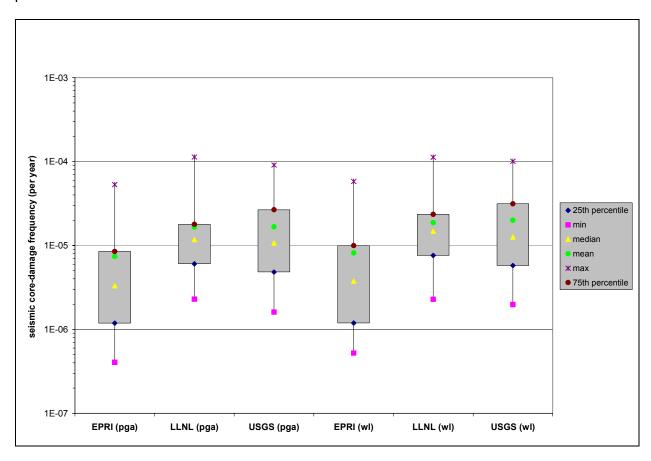


Figure 6. Fleetwide Population Variability Distributions of the Seismic Core-Damage Frequency Estimates.

Figure 6 indicates that the distribution of SCDF based on the 2008 USGS data is about the same as the distribution of SCDF based on the 1994 LLNL data. These results suggest that no change has been made in the fleetwide seismic risk since completion of the IPEEE program. However, Figure 6 must be carefully interpreted because the SCDF estimates at individual plants may have either increased or decreased. Figure 7 illustrates this observation by providing "box-and-whisker" plots of the distribution of the change in SCDF.

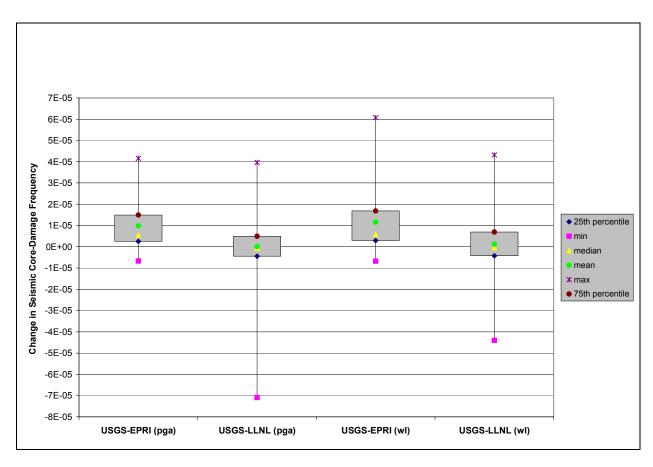


Figure 7. Fleetwide Population Variability Distributions of the Change in Seismic Core-Damage Frequency.

As a further aid to interpreting the results of the Safety/Risk Assessment, Figure 8 provides a plot that was constructed to simultaneously show the change in SCDF with respect to the 1989 EPRI data and the change in SCDF with respect to the 1994 LLNL data (this plot is termed the "delta-delta plot"). A "continue zone" was developed to identify plants where one change in SCDF is above 10⁻⁵ per year and the other change in SCDF is positive. Plants that lie in the "continue zone" are of potential interest because the SCDF based on the 2008 USGS seismic hazard data is greater than either of SCDF estimates based on the 1989 EPRI and 1994 LLNL seismic hazard data. The results of the Safety/Risk Assessment indicate that 24 plants lie in the "continue zone."

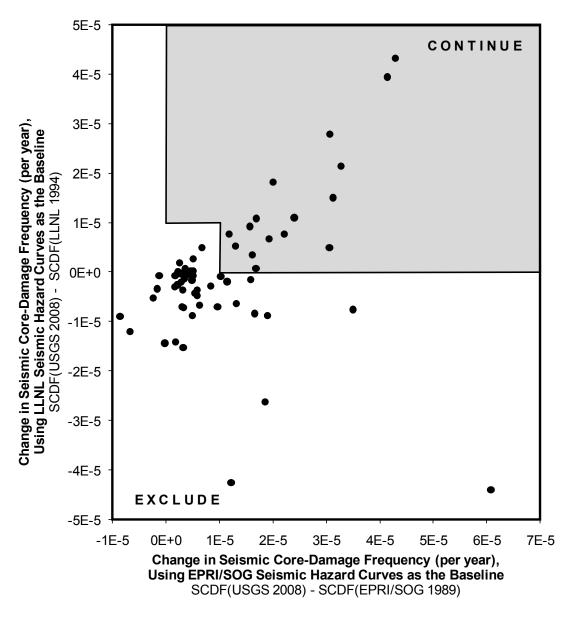


Figure 8. Change in SCDF with Respect to the 1989 EPRI and 1994 LLNL Seismic Hazard Data Sets Based on 2008 USGS Seismic Hazard Data (Delta-Delta Plot).

4.2 <u>Evaluation of Changes in Seismic Hazard Estimates</u>

To develop insights that may help in the Safety and Risk Assessment Stage, additional comparisons of the changes in seismic hazard were made. This evaluation of the potential significance of changes in seismic hazards was performed in a stepwise fashion posing a series of questions that, if answered in the negative, indicated no substantive change in the estimate of seismic hazard at a particular NPP. If the answer to the question was affirmative, the NPP was included in the next step of the assessment process.

Question 1. Does current staff guidance produce different design spectrum than the SSE?

The original development of seismic design bases for the existing reactor fleet was deterministic and not consistent with current practice. This does not necessarily mean that the seismic design basis (the Safe Shutdown Earthquake, or SSE, spectrum) was, or is, deficient in some fashion. If the process currrently defined in Regulatory Guide 1.208 is applied to develop a seismic design basis spectrum (the Ground Motion Response Spectrum [GMRS]), will it be different than the SSE for an individual site? To try and answer this question, the GMRS developed using the USGS-based hazard estimates is compared to the SSE.

Note: RG 1.208 provides an alternative for use in satisfying the requirements set forth in 10 CFR 100.23. Specifically, RG 1.208 was developed to provide general guidance on methods acceptable to the NRC staff for (1) conducting geological, geophysical, seismological, and geotechnical investigations; (2) identifying and characterizing seismic sources; (3) conducting a probabilistic seismic hazard assessment (PSHA); (4) determining seismic wave transmission (soil amplification) characteristics of soil and rock sites; and (5) determining a site-specific, performance-based GMRS. RG 1.208 states that a PSHA in the CEUS must account for credible alternative seismic source models through the use of a decision tree with appropriate weighting factors that are based on the most up-to-date information and relative confidence in alternative characterizations for each seismic source. It recognizes that the seismic sources identified and characterized by the Lawrence Livermore National Laboratory (LLNL) and the Electric Power Research Institute Seismic Owners Group (EPRI/SOG) have been used for studies in the CEUS in the past, and that the United States Geological Survey also maintains a large database of seismic sources for both the CEUS and the WUS which may be beneficial in identifying the seismic sources that are relevant to a given nuclear power plant site. Although the LLNL, EPRI/SOG, or the USGS seismic hazard curves used in the GI-199 Safety/Risk Assessment do not, as-is, meet the guidance in RG 1.208, they are adequate for determining if GI-199 should proceed to the Regulatory Analysis Stage of the GIP.

To perform this comparison, several assumptions are required. First, the site characteristics and amplification functions are assumed to be similar to those defined in EPRI NP-6935 and free-surface motions are developed. Second, the seismic spectrum can be characterized by two intervals—peak ground acceleration (PGA) and spectral acceleration averaged between 5 and 10 Hz ($SA_{Avg5-10}$). PGA has been widely used to develop fragility estimates and represents the performance of SSCs that are sensitive to inertial effects. For SSCs that are sensitive to instructure response, the $SA_{Avg5-10}$ captures the loading characteristics. Third, the GMRS is computed as:

GMRS_{USGS}=SA_{USGS}(at Annual Exceedance Frequency of 10⁻⁴)*DF

where DF is a design factor given by:

DF=
$$max(1.0, 0.6*Ar^{0.8})$$
 and

Ar is the ratio between SA at 10⁻⁵ and 10⁻⁴ annual exceedance frequencies.

The screening was based on identifying those plants where $(GMRS_{USGS}/SSE)^{PGA} > 1$ <u>and</u> $(GMRS_{USGS}/SSE)^{SAAvg5-10} > 1$. Figure 9 shows the results—61 of the 94 plants in the CEUS study area have increased PGA and $SA_{Avg5-10}$ relative to the SSE. For a plant to be "screened-

in" using this criteria, both points plotted in Figure 9 must lie above the GMRS/SSE =1 line for that plant. The same logic holds for Figure 10 as well.

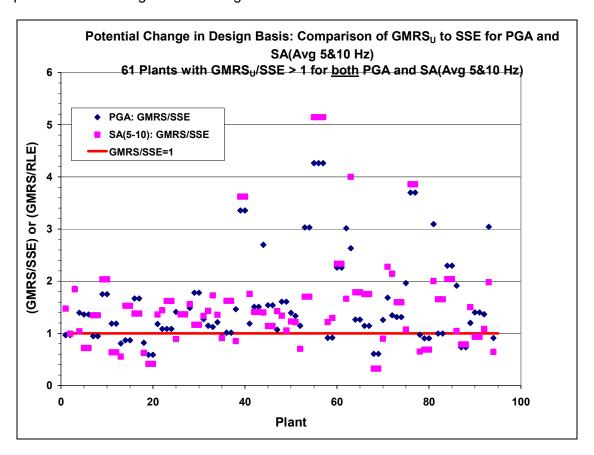


Figure 9. Comparison of GMRS_{USGS} to SSE for PGA and $SA^{Avg5-10}$ for Plant Sites in CEUS. In this screening, 94 plants were evaluated and plotted.

Question 2. Does the current estimate of GMRS exceed the Review Level Earthquake (RLE) used in the IPEEE program?

All of the plants were evaluated under the IPEEE program, and many of them were evaluated for beyond-design basis earthquake loadings. The same strategy was employed as with the GMRS_{USGS}/SSE comparison. The SA_{Avg5-10} values for the RLE were developed using the spectral ratios consistent with the spectral shapes suggested by NUREG-1742 (2001). Plants were identified that met the GMRS_{USGS}/SSE>1 criteria (Question 1) and where (GMRS_{USGS}/RLE)^{PGA} >1 <u>and</u> (GMRS_{USGS}/RLE)^{SAAvg5-10} >1. Figure 10 shows the results—33 plants satisfy both the GMRS_{USGS}>SSE and GMRS_{USGS}>RLE screening criteria.

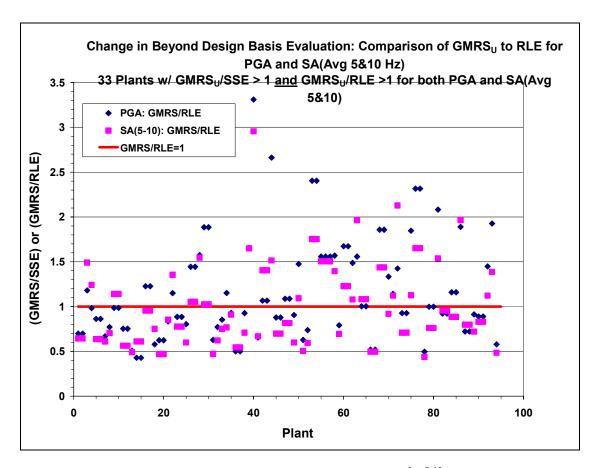


Figure 10. Comparison of GMRS_{USGS} to RLE for PGA and SA^{Avg5-10} for Plant Sites in CEUS.

Question 3. For those plants with increases in GMRS relative to the SSE and RLE is the change significant relative to previous seismic hazard estimates?

In addition to the SSE and RLE, previous seismic hazard estimates were developed as part of the LLNL and EPRI-SOG studies. It is appropriate to test the 2008 results against these previous estimates; if the latest hazard estimates fall within the range implied by the earlier studies, it seems reasonable to conclude no significant change has occurred. Conversely, if the latest estimates exceed both the LLNL and EPRI results, then a significant increase is likely in the hazard estimate. The same strategy was employed as with the GMRS_{USGS}/SSE and GMRS_{USGS}/RLE comparisons. Plants were identified that met the GMRS_{USGS}/SSE>1 criteria (Question 1), the GMRS_{USGS}/RLE >1 criteria (Question 2), and where (GMRS_{USGS}/GMRS_{EPRI})^{PGA} >1, (GMRS_{USGS}/GMRS_{EPRI})^{SAAvg5-10} >1 and (GMRS_{USGS}/GMRS_{LLNL})^{PGA} >1, (GMRS_{USGS}/GMRS_{LLNL})^{SAAvg5-10} >1. Figure 11 shows the results for GMRS_{USGS}>SSE, GMRS_{USGS}>RLE, and GMRS_{USGS}>GMRS_{EPRI/LLNL} screening criteria. For a plant to be "screened-in" using this criteria, all four points plotted in Figure 11 must lie above the GMRS_{USGS}/GMRS_{EPRI/LLNL}=1 line for that plant. Of the 94 plants evaluated, 22 satisfy this screening criteria.

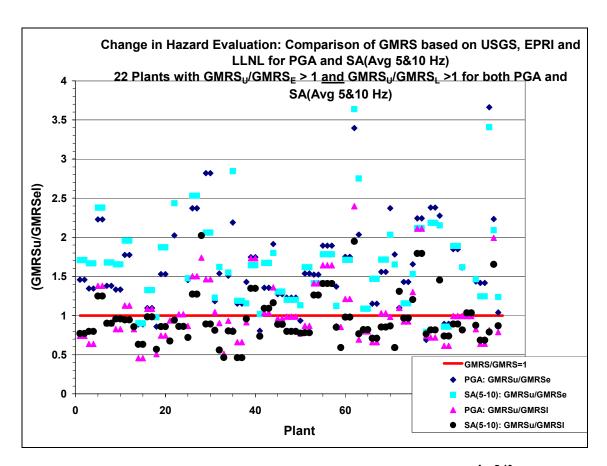


Figure 11. Comparison of GMRS_{USGS} to GMRS_{EPRI/LLNL} for PGA and SA^{Avg5-10} for Plant Sites in CEUS.

Question 4. For those plants with increases in seismic hazard estimate, is there any significant change in risk metric?

To perform this assessment, the point estimates of mean seismic core damage frequency (SCDF) and change in SCDF (Δ -SCDF) are used. Sections 3 and 4 describe the development of these estimates. Use of SCDF and Δ -SCDF is consistent with MD 6.4 and will yield a general ranking of plants by risk. It must be recognized that the estimates are based on the available IPEEE data that are of variable quality and fidelity.

To compute an estimate of Δ -SCDF, a baseline SCDF must be defined. This is complicated because two sets of hazard curves exist that could be used for this computation (LLNL or EPRISOG). To try and alleviate this potential ambiguity, the delta-delta plot shown in Figure 8 was used. To answer Question 4, it is necessary to determine if any of the 22 plants identified in Question 3 appear in the "continue zone" of Figure 8. Of the 22 plants identified as having ground motion response spectrum (GMRS) values that exceed the SSE, exceed the RLE used in the IPEEE program, and exceed GMRS values based on previous EPRI and LLNL data, 21 appear in the continue zone of Figure 8.

5. DISCUSSION AND CONCLUSIONS

5.1 <u>Discussion</u>

The preceding sections summarize the analyses conducted for the Safety/Risk Assessment phase of the Generic Issues Process. It has been necessary to make a number of assumptions to perform these analyses. Prior to developing any conclusions, it is appropriate to specifically state some of the assumptions and limitations in the analyses as they impact some of the major conclusions.

- The use of the USGS-2008 seismic hazard model provides a representative estimate of the seismic hazard at specific NPP sites in the CEUS. However, this model has been developed and used for purposes other than critical facilities such as NPPs. The relative impact (and appropriateness) of certain assumptions within that model for the small annual AEF important for the safety evaluation of NPPs is still an open question. A different set of plants could be identified if a different hazard model was utilized.
- Very simplified, generic site response functions were assumed for the nonrock sites.
 This may produce very different estimates of seismic hazard (and consequently SCDF) relative to more accurate site specific response functions. At least some fraction of the sites identified in EPRI-SOG (1989) as "rock" are probably not appropriately classified as such when considering the most recent ground motion prediction equations.
- The Safety/Risk Assessment phase of GI-199 used a simplified approach based on combining plant-level fragility information developed from the IPEEE results with seismic hazard information to develop a point-estimate of SCDF.
 The approach used to estimate SCDF does not provide any insight into which SSCs are important to seismic risk.
- The IPEEE studies were conducted to identify seismic vulnerabilities in the existing NPPs. In the GI-199 Safety/Risk Assessment, NRC staff is attempting to use that information for a different purpose—specifically to develop quantitative risk information. Significant differences in applicable information exist within the IPEEE results due to the different types of analyses conducted (PRA vs. full-, focused-, or reduced-scope SMAs) and screening level. •For a number of the plants that performed reduced-scope SMA analyses as part of the IPEEE program, little useful information exists regarding plant capacity.
- For many of the plants that performed a PRA and used a uniform hazard spectrum as the RLE-spectrum, NRC staff assumed that the HCLPF-point was at least equal to the SSE value for all structural frequencies.
- The IPEE submittals generally provided limited information regarding the seismic capability of containments.

5.2 Conclusions

- Seismic hazard estimates have increased: Updates to seismic data and models indicate that estimates of the seismic hazard, at some operating nuclear power plant sites in the Central and Eastern United States, have increased.
- There is no immediate safety concern: Plants have seismic margin and the results of the GI-199 Safety/Risk Assessment confirm that overall seismic risk estimates remain small. GI-199 is not an adequate protection issue.
- Assessment of GI-199 should continue: Using available seismic hazard and plant seismic fragility information, the Safety/Risk Assessment found that the increase in coredamage frequency for about one-fourth of the currently operating plants is large enough to warrant continued evaluation under the Generic Issues Program. This conclusion is corroborated by the finding that, for many currently operating CEUS plants, a GMRS developed using the technical approach currently endorsed by the NRC staff is not bounded by the SSE (licensing basis) and exceeds previous "beyond design basis" evaluations (IPEEE RLE).
- Additional information is needed to complete the assessment of GI-199: Section 5.1 broadly discusses what additional information is needed to complete the assessment of GI-199. Specific additional information needs are listed below:
 - New site-specific seismic hazard curves: The staff is aware that EPRI has prepared new site-specific seismic hazard curves for many currently operating CEUS plants. In addition, new seismic hazard estimates for the CEUS will become available in late 2010 or early 2011 (these are a product of a joint NRC, DOE, USGS, and EPRI project). The hazard curves should cover a range of appropriate structural frequencies (PGA to 0.5 Hz), and be in a tabular, digital form.
 - New frequency dependent, site-specific amplification functions: Amplification functions are used to translate seismic motions from hard rock conditions to appropriate surface conditions. These functions should be consistent with the recent seismic evaluations performed by EPRI using updated seismic hazard results (see previous item), and be in tabular, digital form.
 - Current plant-level fragility information: The staff recognizes that many plants have been modified since completion of their IPEEs, and believes that the plant-level fragility information used to complete the assessment of GI-199 should reflect the best available information. Specific information needed includes the median seismic capacity (C_{50}), the composite logarithmic standard deviation (β_C), and spectral ratios (relative to PGA) for 1, 5, and 10 Hz (at a minimum).
 - Plant-specific significant contributors to seismic risk: In order to progress with the Regulatory Analysis Stage, a comprehensive list of candidate plant backfits must be identified for subsequent value-impact analysis. One way to develop such a list is to consider the significant contributors to seismic core-damage risk and the

approach used to identify them. It is also important to identify significant contributors to containment seismic performance.

6. REFERENCES

EPRI NP-6395-D, 1989, "Probabilistic Seismic Hazard Evaluation at Nuclear Plant Sites in the Central and Eastern United States: Resolution of the Charleston Issue," Electric Power Research Institute, Palo Alto, CA.

EPRI-1012045, 2005a, Program on Technology Innovation: Assessment of a Performance-Based Approach for Determining Seismic Ground Motions for New Plant Sites, V2 Seismic Hazard Results at 28 Sites: Electric Power Research Institute, Palo Alto, CA.

EPRI-1012965, 2005b, Program on Technology Innovation: Use of CAV in Determining Effects of Small Magnitude Earthquakes on Seismic Hazard Analyses, Electric Power Research Institute, Palo Alto, CA.

Frankel, A., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E., Hanson, S., and Hopper, M., 1996, National Seismic Hazard Maps-Documentation: U.S. Geological Survey Open-File Report 96-532, 110p.

Frankel, A. D., and 10 others, 2002, Documentation for the 2002 Update of the National Seismic Hazard Maps, U.S. Geological Survey Open-File Report 02-420, Denver, CO.

Kennedy, R.P., 1997, "Overview of Methods for Seismic PRA and Margins Including Recent Innovations," Proceedings of the Organization for the Economic Cooperation and Development/Nuclear Energy Agency Workshop on Seismic Risk, August 10-12, Tokyo, Japan.

NUREG/CR-0098, 1978, "Development of Criteria for Seismic Review of Selected Nuclear Power Plants", U.S. Nuclear Regulatory Commission, Washington, D.C.

NUREG/CR-5250, 1989, "Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains", U.S. Nuclear Regulatory Commission, Washington, D.C.

NUREG-1407, 1991, "Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities," U.S. Nuclear Regulatory Commission, Washington, D.C.

NUREG-1488, 1994, "Revised Livermore Seismic Hazard Estimates for Sixty-Nine Nuclear Power Plant Sites East of the Rocky Mountains", U.S. Nuclear Regulatory Commission, Washington, D.C.

NUREG/CR-6372, 1997, "Senior Seismic Hazard Analysis Committee (SSHAC), Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts", Lawrence Livermore National Laboratory, Livermore, CA.

NUREG-1742, 2001, "Perspectives Gained From the Individual Plant Examination of External Events (IPEEE) Program", Final Report: U.S. Nuclear Regulatory Commission, Washington, D.C.

Petersen, M.D, and 14 others, 2008, "Documentation for the 2008 Update of the United States National Seismic Hazard Maps by the National Seismic Hazard Mapping Project," United States

Geological Survey Open-file Report 2008-1128 (viewable from: http://pubs.usqs.gov/of/2008/1128).

U.S. Nuclear Regulatory Commission (USNRC), "Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities - 10CFR 50.54(f)," Generic Letter 88-20, Supplement 4, June 28, 1991.

USNRC, Memorandum to F. Eltawila from M. Mayfield, "Identification of a Generic Safety Issue," Dated May 26, 2005 (ML051450456).

USNRC, Memorandum to M. Mayfield from F. Eltawila, "Generic Issue 199, "Implications of Updated Probabilistic Seismic Hazard Estimates in Central and Eastern United States," dated June 9, 2005 (ML051600272).